Construction and genetic characterization of an interspecific mulberry hybrid panel aimed at resistance to late leaf rust and adaptation to the tropics
Hammer, K. Hull, Hong Kong. in raspberry Vol. 1 (eds Funt, RC & Hall, HK) 20–40 (CABI, 2013).
Google Scholar
Graham, J. & Brennan, R. Mulberry breeding, challenges and progress. In (eds Graham, J. & Brennan, R.) 1–16 (Springer, 2018).
Organization database. Crops, yield and production in major berry-producing countries; http://www.fao.org/faostat/en/#data/QC/visualize (2021).
Raseira, MDCB, Gonçalves, EDG, Trevisa, R. & Antunes, LECA Technical aspects of mulberry cultivation. in Embrapa Vol. 24 (eds Rasira, MDCB et al.) (Embrapa Information Technology, 2004).
Google Scholar
Caminiti, A. and Bagot, E. Raspberry Production. in Mulberry and raspberry production techniques (Eds. Rufato, ADR & Antunes, LEC) 11–34 (Embrapa Information Technology, 2016).
Google Scholar
Oliveira, M.E., Jr., J.S.Z., Balbino, J.M.D.S., Guarsoni, R.C. and Costa, H. Mulberry tree: cultivation and post-harvest in the mountainous region of Espiritu Santo (Capixaba Institute for Research, Technical Assistance and Rural Extension, 2017).
Dolan, A., MacFarlane, S. & Jennings, S. N. Pathogens in Raspberry et al. Rubus The prosecution. in Mulberries: reproduction, challenges and progress (Eds. Graham, J. & Brennan, R.) 41-62 (Springer, 2018).
Google Scholar
Lewis, D. & Crowe, L. K. Unilateral interspecific incompatibility in flowering plants. here. 1958 122(12), 233-256 (1958).
Google Scholar
Bhadauria, V. et al. to set Culinary lenses Defense genes responsive to anthracnose pathogens Colletotrichum truncatum. BMC Genet. 141-9 (2013).
Khadgi, A. & Weber, C. A. Genome-wide association study (GWAS) examining the genome controlling spike production in red raspberries (Rubus Idaeus to.). agricultural engineering 1127 (2021).
Zahid, G., Aka Kaçar, Y., Dönmez, D., Küden, A. & Giordani, T. Perspectives and recent progress of genome-wide association studies (GWAS) in fruits. mall. Biol. representative. 495341-5352 (2022).
Meuwissen, THE, Hayes, BJ & Goddard, ME Predicting total genetic value using genome-wide dense marker maps. Genetics 1571819-1829 (2001).
Willing, E.M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when many SNP markers are used. One plus 7e42649 (2012).
Alshire, R.J et al. A powerful and simple approach for genotyping by sequencing (GBS) of highly diverse species. One plus 6e19379 (2011).
Van Buren, R. et al. Blackberry genome (Western Bush). plant c. 87535-547 (2016).
Dossett, M., Bassil, N.V., Lewers, K.S. & Finn, C.E. Genetic diversity in wild and cultivated blackberries (Western Bush L.) were assessed by simple sequence repeat markers. Genet. Resources. Crop development. 591849-1865 (2012).
Foster, T.M., Bassil, N.V., Dossett, M., Leigh Worthington, M. & Graham, J. Genetic and genomic resources for Rubus Education: a roadmap for the future. Vegetable garden is nothing. 6116 (2019).
Jamieson, AR & Nickerson, NL Inheritance of resistance to late yellow rust (American Puccini) in red berries. horticultural act. 50553-57 (1999).
Bhandari, H., Nishant Bhanu, A., Srivastava, K., Singh, M. & Hemantaranjan, A. Evaluation of genetic diversity in crop plants – an overview. Status. Agricultural plants. Precision. 700255 (2017).
Google Scholar
Funt, R. C. and Hall, H.K raspberry (Cabi, 2013).
Knight, V.H. Rubus Breeding Worldwide and Mulberry Breeding Programme, International Horticultural Research, East Malling (2014).
Dossett, M., Bassil, N.V., Lewers, K.S. & Finn, C.E. Genetic diversity in wild and cultivated blackberries (Western Bush L.) were assessed by simple sequence repeat markers. Genet. Precision. Crop development. https://doi.org/10.1007/s10722-012-9808-8 (2012).
Lebedev, VG, Subbotina, NM, Maluchenko, OP, Krutovsky, KV & Shestibratov, KA Evaluation of genetic diversity in mulberry cultivars of different colors using SSR markers located in flavonoid biosynthesis genes. agricultural engineering 9518 (2019).
Castillo, N. R. F., Reed, B. M., Graham, J., Fernández-Fernández, F. & Bassil, N. V. Microsatellite Markers for raspberry and blackberry. C. A.M. SOC. hortec. Sci-fi. 135271 (2010).
Jennings, D.L Raspberries and blackberries: their reproduction, diseases and growth (Academic Press, 1988).
Google Scholar
Pinczinger, D., von Reth, M., Hanke, M. V. & Flachowsky, H. Selfing incompatibility of raspberry cultivars evaluated by SSR markers. Sci-fi. hortec. 288110384 (2021).
Weber, CA Genetic diversity in blackberries detected by RAPD markers. Hortscience 38269-272 (2003).
Lucero, X., Wright, E. R. and Perez, B. A. Occurrence of late leaf rust caused by American Puccini with red berries (Rubus Idaeus) in Buenos Aires, Cordoba, and Entre Rios, Argentina. dis plant. 92653 (2008).
Reserve, E. incompatibility in Rubus With special reference to R.Edius to. Can. J. Genet. Sitole. 10, 253-262. https://doi.org/10.1139/g68-037 (2011).
Poland, JA, Brown, PJ, Sorrells, ME & Jannink, JL Development of high-density genetic maps for barley and wheat using a novel two-enzyme sequencing genotyping approach. One plus 732253 (2012).
Langmead, B. & Salzberg, S. L. Fast read alignment with bowtie II. Nat. Methods 9357 (2012).
White, H. et al. Raspberry Genome Assembly and Annotation Project Rubus Idaeus. com.bioRxiv 546135. Preprint at https://www.biorxiv.org/content/10.1101/546135v2. https://doi.org/10.1101/546135 (2019)
Globitz, J.C et al. TASSEL-GBS: high-capacity genotyping by sequencing analysis pipeline. One plus 9e90346 (2014).
Benesty, J., Chen, J., Huang, Y. & Cohen, I. Pearson correlation coefficient. Springer Top. Signaling process. 21-4 (2009).
Google Scholar
Granato, I. & Fritsche-Neto, R. The “snpReady” package. Crane (2018).
Villanueva, B. et al. The value of genomic relatedness matrices for estimating levels of inbreeding. Genet. torrent. development. 531-17 (2021).
VanRaden, P.M. Efficient methods for computing genomic predictions. J. Dairy Science. 914414-4423 (2008).
Jombart, T., Devillard, S. & Balloux, F. Discriminant principal components analysis: a new method for analyzing genetically structured populations. BMC Genet. 111-15 (2010).
Gombart, T. et al. “Agenit” package. Crane (2009).
He, Y. “OmicCircus” package. Crane (2021).