Construction and genetic characterization of an interspecific mulberry hybrid panel aimed at resistance to late leaf rust and adaptation to the tropics

  • Hammer, K. Hull, Hong Kong. in raspberry Vol. 1 (eds Funt, RC & Hall, HK) 20–40 (CABI, 2013).

    Google Scholar

  • Graham, J. & Brennan, R. Mulberry breeding, challenges and progress. In (eds Graham, J. & Brennan, R.) 1–16 (Springer, 2018).

  • Organization database. Crops, yield and production in major berry-producing countries; http://www.fao.org/faostat/en/#data/QC/visualize (2021).

  • Raseira, MDCB, Gonçalves, EDG, Trevisa, R. & Antunes, LECA Technical aspects of mulberry cultivation. in Embrapa Vol. 24 (eds Rasira, MDCB et al.) (Embrapa Information Technology, 2004).

    Google Scholar

  • Caminiti, A. and Bagot, E. Raspberry Production. in Mulberry and raspberry production techniques (Eds. Rufato, ADR & Antunes, LEC) 11–34 (Embrapa Information Technology, 2016).

    Google Scholar

  • Oliveira, M.E., Jr., J.S.Z., Balbino, J.M.D.S., Guarsoni, R.C. and Costa, H. Mulberry tree: cultivation and post-harvest in the mountainous region of Espiritu Santo (Capixaba Institute for Research, Technical Assistance and Rural Extension, 2017).

  • Dolan, A., MacFarlane, S. & Jennings, S. N. Pathogens in Raspberry et al. Rubus The prosecution. in Mulberries: reproduction, challenges and progress (Eds. Graham, J. & Brennan, R.) 41-62 (Springer, 2018).

    Google Scholar

  • Lewis, D. & Crowe, L. K. Unilateral interspecific incompatibility in flowering plants. here. 1958 122(12), 233-256 (1958).

    Google Scholar

  • Bhadauria, V. et al. to set Culinary lenses Defense genes responsive to anthracnose pathogens Colletotrichum truncatum. BMC Genet. 141-9 (2013).

    Article Google Scholar

  • Khadgi, A. & Weber, C. A. Genome-wide association study (GWAS) examining the genome controlling spike production in red raspberries (Rubus Idaeus to.). agricultural engineering 1127 (2021).

    Article CAS Google Scholar

  • Zahid, G., Aka Kaçar, Y., Dönmez, D., Küden, A. & Giordani, T. Perspectives and recent progress of genome-wide association studies (GWAS) in fruits. mall. Biol. representative. 495341-5352 (2022).

    Article CAS PubMed Google Scholar

  • Meuwissen, THE, Hayes, BJ & Goddard, ME Predicting total genetic value using genome-wide dense marker maps. Genetics 1571819-1829 (2001).

    CAS article PubMed PubMed Central Google Scholar

  • Willing, E.M., Dreyer, C. & van Oosterhout, C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when many SNP markers are used. One plus 7e42649 (2012).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Alshire, R.J et al. A powerful and simple approach for genotyping by sequencing (GBS) of highly diverse species. One plus 6e19379 (2011).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Van Buren, R. et al. Blackberry genome (Western Bush). plant c. 87535-547 (2016).

    Article CAS PubMed Google Scholar

  • Dossett, M., Bassil, N.V., Lewers, K.S. & Finn, C.E. Genetic diversity in wild and cultivated blackberries (Western Bush L.) were assessed by simple sequence repeat markers. Genet. Resources. Crop development. 591849-1865 (2012).

    Article CAS Google Scholar

  • Foster, T.M., Bassil, N.V., Dossett, M., Leigh Worthington, M. & Graham, J. Genetic and genomic resources for Rubus Education: a roadmap for the future. Vegetable garden is nothing. 6116 (2019).

    Article PubMed PubMed Central Google Scholar

  • Jamieson, AR & Nickerson, NL Inheritance of resistance to late yellow rust (American Puccini) in red berries. horticultural act. 50553-57 (1999).

    Article Google Scholar

  • Bhandari, H., Nishant Bhanu, A., Srivastava, K., Singh, M. & Hemantaranjan, A. Evaluation of genetic diversity in crop plants – an overview. Status. Agricultural plants. Precision. 700255 (2017).

    Google Scholar

  • Funt, R. C. and Hall, H.K raspberry (Cabi, 2013).

    Book Google Scholar

  • Knight, V.H. Rubus Breeding Worldwide and Mulberry Breeding Programme, International Horticultural Research, East Malling (2014).

  • Dossett, M., Bassil, N.V., Lewers, K.S. & Finn, C.E. Genetic diversity in wild and cultivated blackberries (Western Bush L.) were assessed by simple sequence repeat markers. Genet. Precision. Crop development. https://doi.org/10.1007/s10722-012-9808-8 (2012).

    Article Google Scholar

  • Lebedev, VG, Subbotina, NM, Maluchenko, OP, Krutovsky, KV & Shestibratov, KA Evaluation of genetic diversity in mulberry cultivars of different colors using SSR markers located in flavonoid biosynthesis genes. agricultural engineering 9518 (2019).

    Article CAS Google Scholar

  • Castillo, N. R. F., Reed, B. M., Graham, J., Fernández-Fernández, F. & Bassil, N. V. Microsatellite Markers for raspberry and blackberry. C. A.M. SOC. hortec. Sci-fi. 135271 (2010).

    Article Google Scholar

  • Jennings, D.L Raspberries and blackberries: their reproduction, diseases and growth (Academic Press, 1988).

    Google Scholar

  • Pinczinger, D., von Reth, M., Hanke, M. V. & Flachowsky, H. Selfing incompatibility of raspberry cultivars evaluated by SSR markers. Sci-fi. hortec. 288110384 (2021).

    Article CAS Google Scholar

  • Weber, CA Genetic diversity in blackberries detected by RAPD markers. Hortscience 38269-272 (2003).

    Article CAS Google Scholar

  • Lucero, X., Wright, E. R. and Perez, B. A. Occurrence of late leaf rust caused by American Puccini with red berries (Rubus Idaeus) in Buenos Aires, Cordoba, and Entre Rios, Argentina. dis plant. 92653 (2008).

    Article CAS PubMed Google Scholar

  • Reserve, E. incompatibility in Rubus With special reference to R.Edius to. Can. J. Genet. Sitole. 10, 253-262. https://doi.org/10.1139/g68-037 (2011).

    Article Google Scholar

  • Poland, JA, Brown, PJ, Sorrells, ME & Jannink, JL Development of high-density genetic maps for barley and wheat using a novel two-enzyme sequencing genotyping approach. One plus 732253 (2012).

    Article Google Scholar Ads

  • Langmead, B. & Salzberg, S. L. Fast read alignment with bowtie II. Nat. Methods 9357 (2012).

    CAS article PubMed PubMed Central Google Scholar

  • White, H. et al. Raspberry Genome Assembly and Annotation Project Rubus Idaeus. com.bioRxiv 546135. Preprint at https://www.biorxiv.org/content/10.1101/546135v2. https://doi.org/10.1101/546135 (2019)

  • Globitz, J.C et al. TASSEL-GBS: high-capacity genotyping by sequencing analysis pipeline. One plus 9e90346 (2014).

    Article ADS PubMed PubMed Central Google Scholar

  • Benesty, J., Chen, J., Huang, Y. & Cohen, I. Pearson correlation coefficient. Springer Top. Signaling process. 21-4 (2009).

    Google Scholar

  • Granato, I. & Fritsche-Neto, R. The “snpReady” package. Crane (2018).

  • Villanueva, B. et al. The value of genomic relatedness matrices for estimating levels of inbreeding. Genet. torrent. development. 531-17 (2021).

    Article Google Scholar

  • VanRaden, P.M. Efficient methods for computing genomic predictions. J. Dairy Science. 914414-4423 (2008).

    Article CAS PubMed Google Scholar

  • Jombart, T., Devillard, S. & Balloux, F. Discriminant principal components analysis: a new method for analyzing genetically structured populations. BMC Genet. 111-15 (2010).

    Article Google Scholar

  • Gombart, T. et al. “Agenit” package. Crane (2009).

  • He, Y. “OmicCircus” package. Crane (2021).

  • You may also like...

    Leave a Reply

    %d bloggers like this: